- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Benzo, Roberto M (1)
-
Kargarandehkordi, Ali (1)
-
Li, Shizhe (1)
-
Lin, Kaiying (1)
-
Phillips, Kristina T (1)
-
Washington, Peter (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The development of digital instruments for mental health monitoring using biosensor data from wearable devices can enable remote, longitudinal, and objective quantitative benchmarks. To survey developments and trends in this field, we conducted a systematic review of artificial intelligence (AI) models using data from wearable biosensors to predict mental health conditions and symptoms. Following PRISMA guidelines, we identified 48 studies using a variety of wearable and smartphone biosensors including heart rate, heart rate variability (HRV), electrodermal activity/galvanic skin response (EDA/GSR), and digital proxies for biosignals such as accelerometry, location, audio, and usage metadata. We observed several technical and methodological challenges across studies in this field, including lack of ecological validity, data heterogeneity, small sample sizes, and battery drainage issues. We outline several corresponding opportunities for advancement in the field of AI-driven biosensing for mental health.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
